
- Nota: a) V_1 é uma válvula de reactância, isto é, uma válvula que, devido às suas características especiais, faz aparecer, neste caso, entre os pontos A e B uma capacidade $C_1 = \underbrace{\mathcal{E}_{mL}}_{\Gamma}$ que fica em paralelo com C_2 . \mathcal{E}_{m} é a transcondutância de V_1 .
 - b) E um oscilador Hartley
 - c) A onda de radiofrequência modulada é determinada pelo tanque L_2 é (C_1+C_2) .
 - d) A onda modulada obtém-se nos pontos 3 e 4;
 nos pontos 1 e 2 aplica-se o sinal de audifrequência (a.f.).
 0 sinal de a.f. faz variar gm; gm faz variar C₁ e C₁ faz variar a frequência do oscilador Hartley, obtendo-se assim uma onda de frequência variável (modulação de frequência).

3.5.2 .8.2

No esquema aqui representado que se utiliza para modular em frequência uma onda de radifrequência

